
KAROLINA SUSOL

Cryptology - is the science about
secure communication.
For a long time, the cryptography
mainly served diplomatic and
military purposes. But nowadays it
is cryptography’s time to shine!
Every single action on the Internet
includes encryption. You can’t
google anything or message
anybody without hundreds of
crypto operations running at the
time.
Cryptosystems are in charge of
wireless networking; phone calls;
banking systems; messages;
authenticity, digital signatures, etc.
This restless science will never stop
changing! And you have to stay on
top all the time in order to use
secure and suitable cryptosystems.
This research will definitely help
you because we:
1) gradually introduce the reader to
the science;

2) classify algorithms and find out
their pros and cons;

3) see how cryptography’s been
evolving;
4) find out why some ciphers have
been compromised;
5) analyze the algorithms’ base in
number theory;
create some tricks to transform
sequences.

It is extremely important to provide
safe communication and protect
people's personal information from
intruders. In order to do that,
cryptography has to change all the
time and improve its methods. And
my research has a few algorithms
that can be used either in a one-
time pad (when the safety is
crucial) or in hash-functions (the
last three of them).

Introduction and Abstract

Materials and Methods

In the first chapter, no complicated
computations were conducted. Just
some conclusions according to the
number of ways to encrypt a
message.
The second one contained proofs to
RSA, Hastad's attack , d ig i ta l
signature (because it is still an
asymmetric algorithm) and Diffie-
Hellman key exchange. Here will b
RSA and my own algorithms.
RSA
1) Choose two big primes p and q
(keep them secret) and compute
their product N
2) Compute Euler’s totient function
φ(N)=(p-1)(q-1)
3) Choose an open exponent e. The
most commonly chosen value for e is

162 +1.
4) Compute the secret value

-1d=e (mod φ(N))
The pair {e, N} is the public key
{d, N} is the private key
Here is how Alice will encrypt her
message using Bob’s private key:
m - Alice’s message expressed in a
number; compute C - ciphertext as
follows:

eBC=m mod NB, where {eB, NB} is
Bob’s public key
Then Bob can decrypt the message
this way:

dB
m=C mod NB, where {dB, NB}is
Bob’s private key

dB
Here is why m=C mod NB

dB eB dB
C =(m) mod NB

-1Since dB=eB mod φ(N), we can
express dB*eB as φ(N)k+1, where k
is a positive integer.

dB (eB*dB) (φ(N)k+1)So C =m =m mod N
We know that for any relatively

prime positive integers m and N the
following equality holds:

φ(N)
a =1(mod N) where a and N are
relatively prime and φ(N) - Euler’s
totient function (Euler’s theorem)
Eventually,

dB (eB*dB) (φ(N)*k+1)C =m =m =m mod N
Often the Carmichael function is used
instead of Euler’s totient function.

The first algorithm:
We partition the sequence so that it is
increasing while each term has as few
digits as possible.
32492340984309137383648 → 3
24 92 340 984 3091 3738 3648
And now we have to add up the digits
in each term modulo b (in example
10):
 A= 36171311
This algorithm could be used in a
one-time pad. But it would be
unsuitable for hashes since it is
neither collision-resistant nor one-
way. We can think of many sequences
that result in A. Here are some of
them:
3 15 56 223 362 1408 9002 12017
3 60 92 836 1424 7727 8346 9183
Optimization:
Since the first number never
changes, Alice and Bob could
determine which digit will be the
starting point.
In order to confuse the attacker, I
r e c o m m e n d s t a r t i n g t h e
transformation from the end.

The next one:
Number the digits and replace ai with
(a+j)%b, where j is the first number i

to satisfy aj=ai.
3249234098430938345771 → (3+6)

(2+5) (4+7) (9+9) (2) (3+12) ...
9 7 1 8 5 5 …
Note. Imagine that the sequence is
located on a circle. Then for each
digit, the “j” will exist (in the worst
case j will go through the whole circle
and then j=i)
This is how this algorithm looks like
on c++:
int main(int argc, char** argv) {
string a;
cin >> a;
int len=a.length();

for(int i=0; i<len; i++){
int curr=a[i]-'0', j;
if(i<len-1) j=i+1;
else j=0;
while(a[j]!=a[i]){
j++;
if(j==len) j=0;
}
cout<<(j+curr)%10;
}}
And here’s how it transforms any
string.
The third one lies in finding the
remainder of the i-th element and the
number (j) of the first such a that j

a%b==i%b. And again, imagine the j

round sequence.
3249234098430943834384231 →
(3+30) (2+5) (4+6) (9+7) (2) …
3 7 0 6 2 …
This one is quite similar to the
previous algorithm.

And the fourth is:
1. Imagine the sequence written
infinitely many times not this way:
1231426731469|1231426731469|...
but this:
…..1426731469|1231426731469|12

31426731469|1231426731469|
2. Take a last digits, write down their i

sum modulo b and delete them.
3. Continue till it is the last digit of
the sequence.
The sequence in the example will
result in:
9 (4+6) (7+3+1) 6 (3+1+4+2)
(1 + 2) (7 + 3 + 1 + 4 + 6 + 9)
(1+2+3+1+4+2+6) (4+6+9) (1)
(2+6+7+3) (9+1+2+3+1+4)
(1+4+2+6+7+3+1+4+6)
9 0 1 6 0 3 0 9 9 1 8 0 4

Photo made by Karolina Susol on the
28th of January 2021.
C++ code to my second algorithm

We classified the famous ciphers and
found the i r weaknesses and
strengths. Most of them aren’t used
nowadays, but they tell a reader a lot
about cryptology throughout History.
Also, we proved the maths base of
some attacks and algorithms using
Chinese Remainder Theorem, The
Fermat–Euler theorem and the
Euclidean algorithm.
In the last chapter, I described one
algorithm that can be used for a one-
time pad (OTP) and the other three
that can be used for both the cipher
and hash functions.
The great advantage of this addition
to OTP is a low risk of decrypting the
messages even in case of stealing
the pad. Of course, such conspiration
is not for daily purposes. And for
national secrets or diplomacy, it
would be perfect.
In addition, the last three algorithms
would be suitable for using in hash-
functions.

Having studied it all I can make a
comparison between symmetric and
asymmetric encryptions.
Symmetric:
fast;
easier to implement (due to simple
operations);
more studied (because it has existed
since ancient times).
Asymmetric encryption:
un l ike symmetr ic , can eas i ly
generate, keep many keys on the
net.
It is far more convenient for key
exchange
And which is better? Without
symmetric encryption operations
with big data would take too much
t ime and wi thout asymmetr ic
encryption it would be impossible to
exchange keys! As I have already
mentioned, most of the time these
types of encryption are combined.

Conclusion

UKRAINE

	Page 1

