MANUFACTURING PROCESS OF A PRODUCT DESTINED FOR BONE DEFECTS RECONSTRUCTION, BASED ON HYDROXIAPATITE AND BIOGENIC BIPHASIC CALCIUM PHOSPHATE

F. Miculescu¹ - A.C. Mocanu¹ - G. Stan² - I.V. Antoniac¹ - M.C. Costoiu¹ S.I. Voicu¹ - M. Miculescu¹ - I.M. Mates¹ - A. Semenescu¹

The invention relates to the manufacturing process of a product destined for bone defects reconstruction, based on hydroxyapatite and biogenic biphasic calcium phosphate, with a controlled ratio between hydroxyapatite/tricalcium phosphate. All calcium phosphates result from the thermal dissociation of calcium carbonate in form of dolomitic marble and seashells, and treatment of calcium hydroxide solution with phosphoric acid (range: 100-130% x calculated stoichiometric amount).

THERMAL DISSOCIATION Biogenic calcium oxide synthesis

- Mechanical brush
- Sectioning of marble slabs

Ambient: air

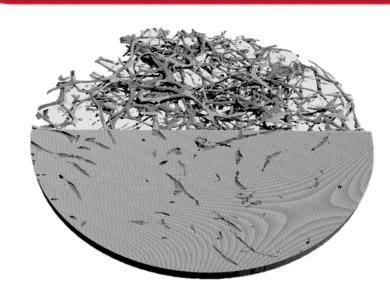
Thermal treatment in electric oven

Temperature: 1300°C Duration: 6 hours

Cooling: oven cooling

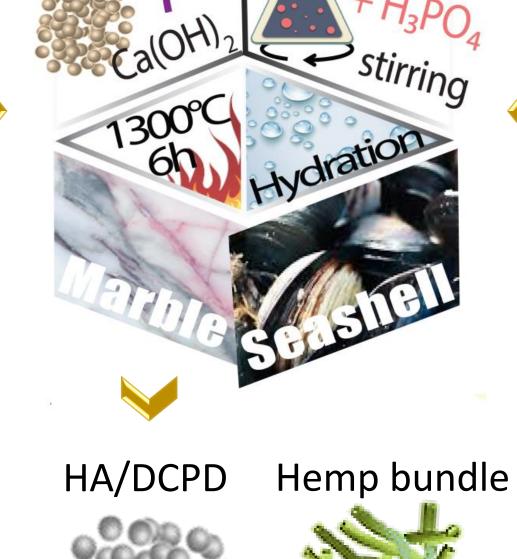
The porosity of the product, evidenced as interconnected channels and pores, results after the complete combustion of the incorporated organic materials. The modulation of the mechanical and biological features is performed function of the sintering parameters (modification of the temperature and holding time).

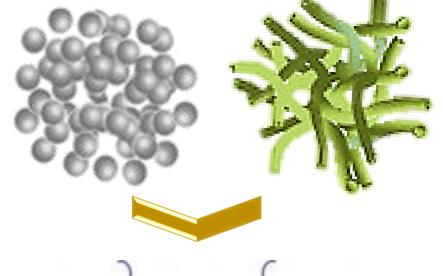
Thermal treatment in electric oven with continuous ventilation

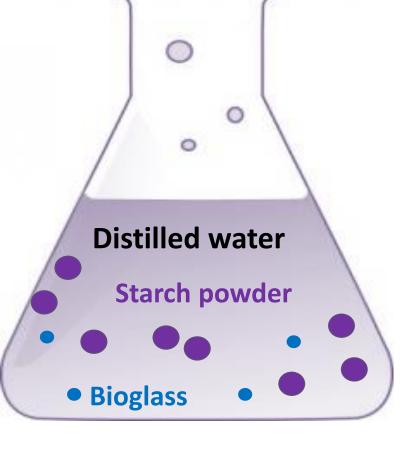

Temperature: 1200°C

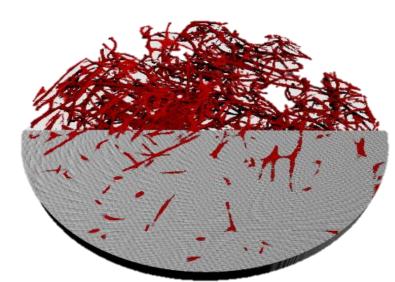
Duration: 10 hours

Ambient: air


Cooling: oven cooling


Internal architecture forming **SINTERING**





MODULATED WET SYNTHESIS Synthesis of ceramic powders

Hydration of calcium oxide: distilled water

Synthesis solution formation

Distilled water: 200 ml Calcium hydroxide: 10 g

Stoichiometric H₃PO₄ (85%): **5.5 ml**

Acid addition rate: 1 ml/min

Magnetic stirring

■ Temperature: 25°C

Time: 2 hours

Rotations per minute: 700 rpm

Drying thermal treatment

Preliminary: 24 hours/RT ■ Temperature: **1300°C** Duration: 6 hours

Ambient: air

The obtained powders are mixed with hemp fibres braided/twisted as a bundle and then soaked in aqueous-solution of starch and bioglass. The mixture is compacted by cold isostatic pressing.

Aqueous starch and bioglass solution

Bioglass: **0.1-2%** of the starch mass

Vol. parts starch+bioglass/distilled water: $\frac{1}{5}$

Environment: thermostatic bath

Temperature: 75°C

Hemp fibres soaked in aqueous starch+bioglass solution

Sectioning dimensions: 12 mm

Bundle diameter by twisting: 1 mm

Modelling: various shapes

Drying: room temperature (RT)

Mechanical processing

Mixture formation – mass ratio of ceramic powder/soaked hemp fibres: 30/2

Pressing: 10-25 MPa

Shape: cylindrical

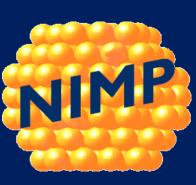
Cylinder dimensions:

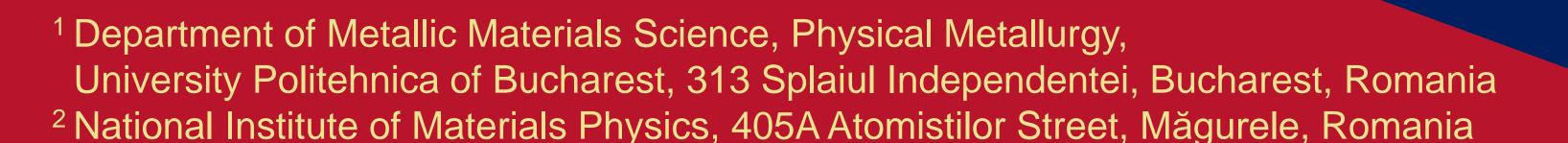
 $h = 30 \text{ mm}; \emptyset = 10 - 50 \text{ mm}$

Preparation technology

FABRICATION OF 3D PRODUCTS

Bone reconstruction SCAFFOLD


Theoretical porosity: 29%


Dimension of hollow pores and channels: $500 - 1000 \mu m$

Dimensional shrinkage (after sintering): 34%

Composition: 90% hydroxyapatite – 10% β – tricalcium phosphate

